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\ ABSTRA~~

In many estimation problems , incomplete as well as complete
samples are available for Bayesian prediction. After develop-
ing the theory for a special , but useful f amily of distribu-
tions , examples are given in life testing, renewal risk pro-
cesses, life contingencies, and the problem of estimating a
defective distribution.
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BAYESIANS LEARN WHILE WAITING

by

William S. Jewell

1. INTRODUCTION

In Bayesian prediction problems, one is interested in using observed

values of a given process to update the prior knowledge about the process

parameters, and thence to make better predictions about the process itself.

Most of the theory concerns itself either with exact calculations using so—

called natural—conjugate families of prior and likelihood distributions [1],

or with best linear least—squares approximations, referred to in the actu—

an al literature as credibility theory (3]. However, both approaches con—

sider only the use of complete data samples.

The purpose of this paper is to show that there are many situations in

which inconrp lete observations also provide updating information, that is,

Bayesians can learn while waiting for the finish of the sampling experiment.

After developing the necessary theory and introducing the gamma—proportional—

hazard family of distributions most appropriate for incomplete data formula-

tions, examples are given from life testing, renewal risk processes, and life

contingency reserving. It is shown in what sense an individual life (or

cohort of similar lives) can learn about his (their) own remaining lifetime

distributions with the passage of time. The paper concludes with the prob—

lam of estimating the parameters and the defect in a defective distribution.

~IIi __ -

~

_ _ _ _ _ _ _ _
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2. MODEL

As is usual in Bayesian models, we assume that ~c , the random life—

time of interest, has a iikelihood di8tribution function , P(x I e) , which

depends upon an unknown random parameter 0 which has a pri or distribution

function , P(e) . We use — 1 — P to denote the complementary distribu-

tion (or survival) function, and we assume that (continuous or discrete)

densities exist, denoted by p(x e) , p(B) etc. )

The basic problem is to use observational data, sampled from the

likelihood distribution with fixed, but unknown parameter, in Bayes’ law to

find the posterior—to—data distribution of the parameter, and thence to pre-

dict various moments and economic functions of the underlying lifetime pro-

cess.

To illustrate the natural way in which incomplete samples arise, we

consider a life—testing scheme in reliability (4], in which:

1. N items, all with lifetimes drawn as samples from P(x I 0) with

common and fixed 0 , are put “on test” at epochs {t~) , and re-

moved from test at epochs {t1 + T~} (i,l,2, ... , N)

2. C of these items (with indices in the set C) will have failed

before removal with observed lifetimes {~c~ — x~ < T~1 U c C)

3. The remaining lifetimes are not completely observed, since the

items are still operating at removal, so it is known only that

{ c ~~> T~) (t I C)

Depending upon the experimental protocol, the {T } may be fixed ini

advance, giving then a random C ; or, C may be fixed in advance for a

• simultaneous test, giving a common, random time—on—test , T . Considering

for a moment that the CTi
} are fixed, and denoting the observed data by

V — {y15y2, ..., 3’N ; C} , where

____________ _ _ ._

_____ ____ _. 
— -s 
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x~ (i c C)

(2.1)
Ti ~ I C)

we can easily argue that the likelihood density of this data set, given

0 , is:

(2.2) p(V I 0) — H p(xi I 0) ~ P
C (T I e)

i€c

Bayes’ law then gives the predictive density for continued testing of

items j I C , or for future experiments on other items with the same

parameter value:

(2.3) p(x I V) 
f~

(x 0)~ 
p(V I 0)p(0) ]de

~ fpc.v I 0 t ) P ( e t ) d O ’j

The ratio in square brackets is the posterior—to—data parameter density,

~(e I V)
(2.2) is also useful for many other life testing protocols. Suppose

that all items are put on test at the same epoch; the cousnon testing inter-

val T need not be fixed in advance, but may be a continuously—evaluated

stopping rule, a possibly random decision to stop experimenting that

depends upon the values {x
1 x2, ... x~ ; C) observed up to and including

T , but not directly upon 0 • In this case, the likelihood includes addi—

tional terms relating to the stopping rule that cancel out of the ratio in

(2.3); the stopping rule is non—informative, and the likelihood kernel

(2.2) is sufficient for  0 • For instance, one could stop after the fifth

failure, or at T equal to twice the first—observed complete lifetime.
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3. THE PROPORTIONAL-HAZARD FAMILY
I

The calculation of (2.3) can, of course, be carried out by computer

for any given prior and likelihood distributions. However , for model—

building, it is desirable to use a family of distributions in which the

calculations are especially tractable so that parametric behavior can be

analyzed theoretically. Unfortunately, the Koopman—Pitman—Darinois expo-

nential family of distributions so useful in credibility theory (23 has no

simple form for pC

- However, a special case of the exponential family, the proportional—

hazard family , [4] has useful properties:

(3.1) PC(x I 0) = e 8
~~~ ; p(x I 0) = eq(x)e 0

~~’~ , (x > 0)

where Q(x) is a monotone non—decreasing function (Q(O) = 0) , and

q(x) = dQ(x)/dx • We note:

1. 0Q(x) is the cwnulative hazard (failure ) function , making q(x)

a unit- or prototype failure rate;

2. If , is a random variable with absolute failure rate, q(w)
and 0 is an integer, the original lifetime, c , has a physical

interpretation as

— mm 
~~l’ 2’ •..,  w0)

3. This family includes the exponential, Weibull , and Gumbel
4

(extreme—value) distributions.

The data likelihood (2.2) becomes :

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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(3.2) p(V I 0) — H q(x j) [8 Ce
_TQ’

~~~~ ]
• icC

where TQT is a statistic,

N
(3.3) TQT (V) — 

~ 
Q(xi) — ~ Q(x~) + ~ Q(T )

i 1  icC jIC ~

referred to in [4] as the total—Q—on—test—statistic, a generalization of

the “total—time—on—test ” concept of reliability life—testing. Note that

if item k was already age Sk (and still working) when placed on test,

then Q(Sk) should be subtracted from the TQT.

A convenient natural conjugate prior for 0 is the gamma density,

/ \C0 l —0Q0Q~~Q 0 J e
(3•4) p(0) p(0 C0,Q0) = 

— (0 > 0)

with hyperparam~ters C0 , Q0 ; the usefulness of (3.4) in modelling uni— 
- 

-

modal densities is well known. It is easy to see that Bayes’ law then

gives a posterior—to—data density of the parameter, p(0 I V) , that is

also gamma, with updated parameters:

(3.5) C0 +C0 +C ; Q0 4 - Q 0 + TQT(V)

Furthermore, the updated means of 0 and obey the exact credibility

formulae:

(3.6) [E{~ I V}]~~ - (1 
- z1)[E(~}]~~ + Z~~T~~(V)1 ‘
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(3.7) E{~~ I V }  — (1 — Z2)E(0 ’) +

with credibility factors:
a

(3.8) C/ (C 0 + C) ; Z2 — C/ (C0 
— 1. + C)

The posterior—to—data variances are also easily obtained:

(3.9) V{~ I V} — 
(C0~~ C) 

[E{~ I V}3 2

(3.10) V{ (1 I V} (~0 _
1
2 + ~) [E~~

—1 I V}]

the first terms decrease with increasing C , and so, ultimately, with

probability one, do the variances. This makes precise the difference be-

tween incomplete and complete samples; two different data sets could lead

to the same mean forecast, but we would have more “confidence” in the re—

suit with the larger number of complete samples.

The terms in square brackets in (3.6) (3.7) are the classical maximum—

likelihood estimators got from the term in square brackets in (3.2). If

the experiment gives a large number of complete observations, relative to

C0 , then the Bayesian and maximum—likelihood estimators coincide. However,

f or relatively incomplete tests, more weight is given the prior means,

E(~} — C0/Q0 , or E{~~~} — Q0/(C0 
— 1)

Classical estimators are often obtained from Bayesian formulae when the

prior knowledge becomes “diffuse” ; in our model this corresponds to keeping

E{i} or E(r ’} f ixed , and letting the corresponding variances (the prior

uncertainty) increase without limit. Prom (3.9) (3.10) we see this corres-

ponds to letting C0 ~ 0 or C0 
- 2 , respectively (with correspond ing
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adjustments in Q0) . Thus, with very uncertain prior knowledge , we get:

(3.11) I ~~ [TQ~~V) ] ’

(3.12) E{ö 1 P1 — 
E{~~

1
1+TQT(V)

Thus, when estimating 0 , we place “full credibility” in the maximum—

likelihood estimator, and ignore all prior information; but, when estima-

ting &l 
, a Bayesian would always insist on keeping the prior ~zean as an

initial data point, because the inverse gamma is still informative.

The mixed, or p redictive dietribution of 3~ , averaged over all

possible values of 8 , is:

(3.13) PC(x I C0,Q0) [Qo/(Qo + Q(x))]
0 , (x > 0)

with density

r
(3.14) p(x C0,Q0) — (C0~(x )IQ0)JQ0/ (Q0 + Q(x))] 

0

a generalization of the shifted Pareto distribution. If the prototype

failure function is Gumbel , we get exponential tails for large x in

(3.13), while if the underlying failures are Weibull, we get the “more

dangerous” algebraic tails. Posterior—to— the—data, predictive density is

of the same form, but with updated parameters.

The cumulative hazard function of the mixed distribution is:

(3.15) R (x I C0,Q0) - -in pC (x C0,Q0) - C0 in [1 + (Q (x)/Q0)]
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One can show that this mixing tends to decrease the rate of failure; in

fact, the mixed. population may have approximately ca~ stant or decreasing

hazard rate, even with increasing q(x)

Life testing applications are covered in more detail in [4], and the

problem of model identification of the form of Q is also considered. We

turn now to applications of these ideas in risk theory.

- 

t
_ _ _ _ _  1~~~TT



9

4. RENEWAL PROCESSES

In one model of the collective risk process, claims are assumed to

follow a renewal process. If, during an exposure interval T , C events

(accidents, claims, equipment failures, etc.) are observed, this means

there are C complete interval samples {x~} , and the final interval—in—

C
progress, T — x1 . If all intervals are sampled from (3.1) with fixed

i—l

0 , the parameter updating becomes:

(4.1) C0 +C 0 + C ; %÷Q0 +~~~~
Q(x

~)+Q(T
_
~~~~

x
~).

Note that not only the random number of events in (O,T] , but also the

actual lengths of the intervals provide information in the general case.

An important special case in risk processes occurs when Q(x) = x

leading to exponentially—distributed intervals, and a Poisson counting pro—

cess , for each 0 . However , here

(4.2)

so we conclude that the Poisson process is special in that only the number

of events in (0,T] , not the epochs of events , provides predictive informa-

tion !

If the claim amount (severity) distribution is independent of 0 (the

usual assumption) , then the above is sufficient to predict total losses

from the compound distribution; in the contrary case, additional modelling

and updating are necessary.
I

:~
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5. INDIVIDUAL LEARNING ABOUT REMAINING LIFE

We turn now to the interesting question of whether or not a Bayesian

can learn about his own remaining lifetime distribution function (rldf).

For a mixed population with average tail distribution Pc

(5.1) Pr {~c > T + u x > TI — 
pC

(T + u) 
— P (u)

P ( T )

represents the fraction of those individual components alive (operating) at

age T which will survive until age T + u

However , for a single life component with known parameter 0 , the

appropriate rldf is:

C
(5.2) Pr {~ ‘ T + u I ~c > T ; 0) — 

P (T + u I 0) 
— P~ (u I 0)

PC (T I e)

If we have to estimate this single life behavior as averaged over the

population (i.e., without Bayesian learning) , we get the prior expected

rldf :

(5.3) E{P~ (u I ~) }  
— 1P

C
(T + U I 0) p( 0)d O

P (T I 0)

which is clearly not identical with (5.1).

Now let us adopt the Bayesian point of view, and estimate the remain—

ing life of a single individual who has lived to age T ; since he is still

alive, we have the single datum V — (x > TI , which must update the

parameter density to:

(5.4) p(e I P) — 
P

C (T I e)p(01 
— 

pC(TI 0)p(8)

f PC (T I $)p( +)d+ P
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So the Bayesian—updated rldf will be

S

(5.5) E ~pC( J o)} fp
C

(T + u I $).t4~~t17p(0) dOT PC(T)

which is exactly the same as the population rldf in (5.l)~ Stated another

way, a single life (or component) cannot, on the average, gather any addi—

tional information about his remaining lifetime distribution by the mere

passage of time, other than that given for the population as a whole—even

though he can learn about his parameter! A surprising, but satisfying

result.

/
I
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6. COHORT LEARNING ABOUT REMAINING LIFE

This does not mean, however, that aeveral incomplete samples cannot

provide information about other lifetimes with the same 0 , nor that a

group of lives with the same 8 cannot learn from the passage of time.

Consider a cohort of N lives with the same parameter which are put “on

test” at the same epoch. From Section 2, with Ti — T for all i , we see

that the data V (xi < T (i c C) ; C) changes (5.5) to:

E (pC( I ~ —

eIV
(6.1) 1 iN—C—i

[I~ (T I O)J It p(x~ I e)-p(e)
IP (T+u 1 0 )  dO
j  pC(p)

where learning would clearly take place.

For the proportional—hazard family,

(6.2) P~(u I e) — e
_0 (T+u)—Q(T)]

If the prior at T — 0 is gamma with hyperparameters C0 and , the

posterior—to-data density of e at T is gamma with hyperparameters

C0 + C and + (N — C)Q(T) + 
~ 
Q(xi) , giving finally the special cohort—

experienced remaining—lifetime distribution function:

r ~ C + C

~ I Q + ( N — C ) Q ( T ) + Z Q ( x ) 1
0

(6.3) (P (u 0)) — I
‘ L~o + ( N _ 1 _ Q ( T ) + Z Q i) + Q ( T +~~

It is easy to see how learning vanishes when N 1 and C - 0
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7. LIFE CONTINGENCIES AND RESERVE S

To apply the results above, consider that we are determining the net

single premium for a continuous life annuity of $1/year, at force of inter—
L 

est 6 , for an individual aged x . Given 0 , this would be (we omit the

usual overbar notation):

(7.1) — fe
_6U

PC(u I 0)du — fe
_6U_ 1)_

~~~~ du

Let us suppose that the prior on 0 is gamma with hyperparameters C
1 , Q1

at the moment of underwriting (age x). The population—average annuity fair

premium is then:

(7.2) a
~
(C1,Q1) — Q l f e~~U[Q1 + Qx(u)} 

1du

where

(7.3) Q
~

(u) — Q(x + u) — Q (x)

is the prototype cumulative failure function for the remaining life, begin-

ning at age x

Now, suppose we have insured a cohort of N lives aged x , all of

whom have the same parameter , and let us follow the cohort for t addi-

tional years. During this time the data provided by the C expirations at

additional ages {t1
} , together with t~ 

pact that N — C lives are still

in existence at age x + t , would update the hyperparameters to:

(7.4) C2 - C1 + C ; Q2(t) - Q1 + (N - C)~~(t) + Jc ~~~t~ ) .
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Although it is too late to change the premium, this additional knowl-

edge could be useful in adaptive modification of the reeerve8 on the N — C

outstanding policies; for a single—premium annuity of $1/year still out—

standing at age x + t , the correct adaptive reserve would be:

(7.5) tV(ax) — a,~.~
(C2,Q2(t))

We remind the reader that C2 and Q2(t) will be random outcomes, depend-

ing upon actual cohort experience during ages (x,x + t ]  . Only when there

is a single incomplete life under observation (C
2 C1 

; Q2(t)

Q1 + Q (t)) will no learning take place, and the reserves will follow the

classic result for an average member of the mixed population:

P
C

( + )
(7.6) 

~~~ 
— fe

6
~
1 
;~(~) du — a~~~(C1,Q1 + Q~

(t))

A similar development could be given in terms of the net single pre-

mium for a life assurance of $1, at force of interest 6 , payable at the

instant of death of an individual now aged x ,

(7.7) A (0 ) _ fe
_ 6
~p~~u I 0)du

The appropriate formulae follow from the previous results by the universal

relation A 1— 6 ax x
It is of interest to follow through the actual stochastic behavior of

a “learning reserve ” of the type (7.5) . First of all, we note that adap—

tive annuity reserves do not decrease as quickly as the corresponding

for saall t and C — 0  ,vhich can bs s.en frcm:
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da
~~~

(C2,Q2(t))

dt 6a,~.,.~
(C2,Q2(t)) 

— 1 —

(7 8) [C2q (x + t)l
+ L Q2(t) j ( (N  — C)a

~~~
(C2,Q2(t))

— (N — C — l)a
~~,~

(C2 + 1 ; Q~ (t))}

as compared with the well—known classical result

da~~ fC2q(x + t) 1

dt — 6a~~~ 
— 1 

+[Q + Q~ (t )j a x+t

The term in square brackets is, of course, the failure rate at x + t for

the mixed population in the proportional—hazard family, i.e., the deriva-

tive of (3.15). When the first and subsequent deaths occur, there is an

instantaneous drop in (7.5), since C2 increases by unity, but Q2(t) is

continuous. In general, if fewer (more) lives than expected terminate

during (x,x + t~ , the reserves on the remaining lives are larger (smaller)

than usual, since this indicates that the value of 0 is smaller (larger)

than average for this cohort. A complementary effect occurs for life assur -

ance learning reserves.

It should be mentioned that a gamma—mixed proportional—hazard model

should be used with care for human mortality. If, for example, the proco—
Uttype failure rate is assumed to follow Makeham s law , q(t )  — A + Be , we

find that the mixed hazard rate (the derivative of (3.15)) is asymptotically

constant, due to the failure—rate—decreasing properties of mixing! One

would have to assume that, given 8 , individuals follow a much stronger

“wear—out” (say, Gumbel), in order to obtain a population Makeham-type law.

It is interesting to speculat. as to whether or not this occurs for closely—

matched humans , where 0 would have to include health , genetic, and •nviron—

mental effects.

.11 

______________________ _________

_

__________________________________________________________________________________________________
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8. DEFECTIVE DISTRIBUTIONS

Component and human lives are finite , with probability one ; however ,

defective distributions arise in a variety of other operational situations.

Consider, for example, the estimation of the time it takes for a number of

requests for bids , mailed survey responses , etc., to be returned . Some

responses are received rather quickly; in other cases, an answer is never

received .

A reasonable model for this situation would add an unknown defect

parameter, • , to the usual lifetime distribution, as follows :

(8.1) pC (x I 8 , $ )  — • + (1 — •)P
C(x 1 0) ; p(x 1 e,~)  — (1 — $)p(x I 0)

$ is then the probability that the lifetime is “infinite.”

Under the life testing scheme of Section 2, the likelihood of the data

set V becomes:

(8.2) p(V I 0,4) — (~)u — •)
C 

~ p(x~ I 0) 1 + (1 — ,)Pc (T I 0)
icC iiC I

Assuming all the intervals T
i 

have common value T , we find the posterior—

to—data density of 8 and $ by a binomial expansion:

p(8,$ I V) —

(8.3) N—C 
(N 

— c~,i (1 — ,)~~i ~ p (xi I e)PC(T I $)N—C—i~ ($,$)
j—0 icC

where ~ is a normalizing constant to make ff p(0,$ I O)ded$ — 1 • To

illustrate the calculations further, assume that the “honest” part of

(8.1), PC (x I 0) , is from the proportional—hazard family (3.1), with

games prior on 0 (3.4). For simplici ty, assume • is, a priori, inde-

pendent of 0 • and has a beta prior density : 

—--- -~~ -—,——-,~ ——- - - -.



(8.4) ~ ($) - p($ I a0,b0) - B
_l
(a0,b0)$

0 (1 - .)°  (0 ~ $ ~ 1)

B(a0,b0) is the beta function, 
r(a0)r (b 0) /r(a 0 + b0) . After straight-

forward calculations with these special forms, we find the mixed beta—

gamma :

p( e , $ I V ) —
(8.5) N—C

Z 11
1
(P)P($ I a + j , b~ + N — i)i ’(° I C0 + C , Q0 + TQT

J
(V))

j—0

where

(8.6) TQT (V) - 
~ 

Q(xi) + (N - C - j)Q(T)
icC

and the mixing probabilities are given by:

I
- I 1—(C0+C)(8.7) 11

1
(V) — K • B(a + j , b + N — + TQTJ

(V)J ,

where, again, K is a normalizing factor to make 
~ 

It
1 

— 1 • It is impor-

tant to note that, posterior—to—data, the estimates of 0 and $ are

dependent , unless all of the observations are complete. For estimating the

mean defect , we have

(8.8) E{~ I V} — 
~ 

II
j(V)[~~~~ ~~~~ N]’

where vs recogniz. the term in~square brackets as the mean of $ , given

only that we observe j defects out of N trials. For N 1 and no

failure:
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a (a + l)[l + Q(T) /Q0]0  + b
• (8.9) E{$ I V}  — a + b + 1 C

~ ° a0 1 + Q(T) /Q0 
0 + b

which shows clearly how the mean defect increases from its original esti-

mate of a0/(a0 + b) towards (a0 + 1)/(a + b + 1) as T + — with no

failure. Of course, if the lifetime ever terminates, E{~ I V} Jumps to

(b0 + l)/(a + b + 1) • Other mixing models are given in (4].

I

1;~~
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